CSCI 210: Computer Architecture Lecture 15: Boolean Algebra

Stephen Checkoway Slides from Cynthia Taylor

CS History: Augustus de Morgan

- British, born in 1871
- Published De Morgan's Laws in 1947
- Introduced the term induction
- Didn't receive an MA from Cambridge because it required passing a theological test and he was an atheist
- Ada Lovelace was his student
- Dedicated to making scientific knowledge available to the public – wrote numerous articles about many topics

Boolean Algebra

• Branch of algebra in which all variables are 1 or 0 (equivalently true or false)

• Introduced by George Boole in 1847

- Multiple notations
 - $-x \wedge y \qquad x \vee y$
 - xy x + y

Boolean laws

• Commutativity x + y = y + x xy = yx

• Associativity
$$x + (y + z) = (x + y) + z$$
 $x(yz) = (xy)z$

• Distributivity x + yz = (x + y)(x + z) x(y + z) = xy + xz

• Idempotence x + x = x xx = x

Which Identity Laws Are True?

- A. x + 0 = x, x0 = x
- B. x + 0 = x, x1 = x
- C. x + 1 = x, x0 = x
- D. x + 1 = x, x1 = x
- E. None of the above

Which Complementation Laws Are True?

- A. $\overline{x} + x = 0$, $\overline{x}x = 0$
- B. $\overline{x} + x = 0$, $\overline{x}x = 1$
- C. $\overline{x} + x = 1$, $\overline{x}x = 0$
- D. $\overline{x} + x = 1$, $\overline{x}x = 1$
- E. None of the above

Which Annihilator Laws Are True?

- A. x + 0 = 0, x0 = 0
- B. x + 1 = 1, x0 = 0
- C. x + 0 = 0, x1 = 1
- D. x + 1 = 1, x1 = 1
- E. None of the above

Simplifying Expressions

$$F = XYZ + XY\overline{Z} + \overline{X}Z$$

A. $F = XY + \overline{X}Z$ B. $F = X(YZ + \overline{YZ} + Z)$ C. $F = XY(Z + \overline{Z}) + \overline{XZ}$ D. This cannot be simplified further

- Identity law: A + 0 = A and $A \cdot 1 = A$
- Zero and One laws: A+1=1 and $A\cdot 0=0$
- Inverse laws: $A + \overline{A} = 1$ and $A \cdot \overline{A} = 0$
- Commutative laws: A+B=B+A and $A\cdot B=B\cdot A$
- Associative laws: A + (B + C) = (A + B) + C and $A \cdot (B \cdot C) = (A \cdot B) \cdot C$
- Distributive laws: $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$ and $A + (B \cdot C) = (A + B) \cdot (A + C)$

Simplifying Expressions $F = XYZ + XY\overline{Z} + \overline{X}Z$

- Identity law: A + 0 = A and $A \cdot 1 = A$
- Zero and One laws: A+1=1 and $A\cdot 0=0$
- Inverse laws: $A + \overline{A} = 1$ and $A \cdot \overline{A} = 0$
- Commutative laws: A+B=B+A and $A\cdot B=B\cdot A$
- Associative laws: A + (B + C) = (A + B) + C and $A \cdot (B \cdot C) = (A \cdot B) \cdot C$
- Distributive laws: $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$ and $A + (B \cdot C) = (A + B) \cdot (A + C)$

De Morgan's Law

• De Morgan's Law

- Use to obtain the complement of an expression

$$\overline{x+y} = \overline{x} \cdot \overline{y}$$
$$\overline{xy} = \overline{x} + \overline{y}$$

What is AB + AC?

- A. $\overrightarrow{A} \overrightarrow{B} + \overrightarrow{A} \overrightarrow{C}$
- B. (AB)(AC)
- C. (A + B)(A + C)
- D. (A + B)(A + C)
- E. None of the above

 $\overline{x+y} = \overline{x} \cdot \overline{y}$ $\overline{xy} = \overline{x} + \overline{y}$

Questions on Boolean Algebra?

Sum of Products form of Boolean function f

- Developed from the truth table for f(x₁, ..., x_n)
- Find all the rows of the truth table in which f = 1
- By definition, f(x₁, ..., x_n) = 1 if and only if the input x₁, ..., x_n match one of these rows

- We can write f as an OR (sum) of expressions checking if the input matches one of the rows:
 - f = (input matches row 1) OR (input matches row 4) OR ...

Sum of Products

- Developed from the truth table
 - Each product term contains each input exactly once, complemented or not.
 - Need to OR together set of AND terms to satisfy table
 - One product for each 1 in F column

X	Y	F
0	0	0
0	1	1
1	0	1
1	1	0

What is the Sum of Products of F? A B C F A. \overline{A} + BC 0 0 0 1 0 0 1 1 B. ABC + ABC + ABC0 1 0 1 0 1 1 1 C. ABC + ABC + ABC + ABC + ABC1 0 0 01 0 1 0 D. ABC + ABC + ABC + ABC + ABC1 1 0 1 1 1 1 0

E. None of the above

Product of Sums

- Express the same function as the AND of ORs
- Write out the sum of products for F and then take the complement using DeMorgan's law

X	Υ	F
0	0	0
0	1	1
1	0	1
1	1	0

Product of Sums

• Simplified: Select the rows where F is 0 and take the complements of the inputs to form the ORs

What is the Product of Sums of F?

A. F = (A + B + C)(A + B + C)(A + B + C)

B. F = (A + B + C)(A + B + C)(A + B + C)

C. F = (A+B+C)(A+B+C)(A+B+C)

- D. F = (A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)
- A B C F 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 0

Programmable Logic Array

- Simple way to create a logical circuit from a truth table, using sum of products
- Set of inputs and inverted inputs
- Array of AND gates

 Form set of product terms
- Array of OR gates
 Logical sum of product terms

Uses

• Either programmed during manufacture, or can be reprogrammed

• Used in CPUs, microprocessors

Creating a PLA

- Prepare the truth table
- Write the Boolean expression in sum of products form.
- Decide the input connection of the AND matrix for generating the required product term.
- Then decide the input connections of OR matrix to generate the sum terms.
- Program the PLA.

Size

• Only truth table entries that have a True (1) output are represented

• Each different product term will have only one entry in the PLA, even if the product term is used in multiple outputs

Multiple outputs

Inputs		Outputs			
A	B	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Output functions: D(A, B, C), E(A, B, C), F(A, B, C)

Inputs		Outputs			
A	B	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Sum of Products for output D

- A ABC + ABC
- $B \quad ABC + ABC$
- $C \quad (A+B+C)(A+$
- D ABC + ABC

Field Programmable PLAs

Figure 3-15. A 12-input, 6-output programmable logic array.

Reading

• Next lecture: Combinational Logic

- Section 3.3 (Skip Don't Cares section)